Ideal Topology on Effect Algebras

Zhihao Ma,^{1} **Junde Wu,**^{$1,3$} **and Shijie Lu**²

The ideals of effect algebras induce a topology on effect algebras. The operations ⊕ and \ominus of effect algebras are continuous with respect to this topology.

KEY WORDS: effect algebras; ideals; uniformities; topologies.

1. INTRODUCTION

Foulis and Bennet in 1994 introduced the following algebraic system (*E*, ⊥, \oplus , 0, 1) to model unsharp quantum logics, and $(E, \perp, \oplus, 0, 1)$ is said to be an *effect algebra* (Foulis and Bennet, 1994):

Let *E* be a set with two special elements 0, 1; \perp be a subset of $E \times E$; if $(a, b) \in \bot$, denote $a \perp b$, and let $\oplus : \bot \to E$ be a binary operation; and let the following axioms hold:

(E1) *Commutative Law.* If $a, b \in E$ and $a \perp b$, then $b \perp a$ and $a \oplus b = b \oplus a$.

 $(E2)$ *Associative Law.* If $a, b, c \in E$, $a \perp b$, and $(a \oplus b) \perp c$, then $b \perp c$, $a \perp (b \oplus c)$ *c*), and $(a \oplus b) \oplus c = a \oplus (b \oplus c)$.

(E3) *Orthocomplementation Law.* For each $a \in E$ there exists a unique $b \in E$, such that $a \perp b$ and $a \oplus b = 1$.

(E4) *Zero-Unit Law.* If $a \in E$ and $1 \perp a$, then $a = 0$.

Let $(E, \perp, \oplus, 0, 1)$ be an effect algebra. If $a, b \in E$ and $a \perp b$, we say that a and *b* be *orthogonal*. If $a \oplus b = 1$, we say that *b* is the *orthocomplement* of *a*, and we write $b = a'$. Clearly $1' = 0$, $(a')' = a$, $a \perp 0$, and $a \oplus 0 = a$ for all $a \in E$.

We say that $a \leq b$ if there exists $c \in E$, such that $a \perp c$ and $a \oplus c = b$. We may prove that \leq is a partial ordering on *E* and satisfies $0 \leq a \leq 1, a \leq b \Leftrightarrow b' \leq$ *a*['], and *a* ≤ *b*['] \Leftrightarrow *a* ⊥*b* for *a*, *b* ∈ *E*. If the partial order ≤ of an effect algebra

2319

¹ Department of Mathematics, Zhejiang University, Hangzhou 310027, People's Republic of China.

²City College, Zhejiang University, Hangzhou, People's Republic of China.

³ To whom correspondence should be addressed at Department of Mathematics, Zhejiang University, Hangzhou 310027, People's Republic of China; e-mail: wjd@math.zju.edu.cn.

 $(E, \perp, \oplus, 0, 1)$ defined as above is a lattice, then the effect algebra $(L, \perp, \oplus, 0, 1)$ is said to be a *lattice effect algebra*.

If $a \leq b$ and $e \in E$, such that $a \perp e$, $a \oplus e = b$, we denote e as $b \ominus a$ and \ominus is called the *difference operation*. Furthermore, it is easy to prove that if $a < b <$ c , then the difference operation \ominus satisfies the following properties (Foulis and Bennet, 1994):

 $(D1)$ *b* \ominus *a* < *b*.

 $(D2) b \ominus (b \ominus a) = a.$

 $(D3)$ $(c \ominus b) \leq (c \ominus a)$.

 $(D4) (c \ominus a) \ominus (c \ominus b) = b \ominus a$.

The properties D1–D4 are very important, in fact, Kopka and Chovanec in 1994 introduced the following quantum logic structure (Kopka and Chovanec, 1994):

A *difference poset* is a partially ordered set $(D, \le 0, 1)$ with a maximum element 1 and a minimum element 0, and with a partially defined binary operation \ominus , such that $b \ominus a$ is defined iff $a \leq b$, and the operation \ominus satisfies properties $(D1)–(D4)$.

Thus, each effect algebra can induce a difference poset. Foulis and Bennet pointed out that the converse is also true (Foulis and Bennet, 1994). Thus, the effect algebras and the difference posets are the same thing.

Let $(E, \perp, \oplus, 0, 1)$ be an effect algebra. A nonempty subset *I* of $(E, \perp, \oplus, 0, 1)$ 0, 1) is said to be an *ideal* of $(E, \perp, \oplus, 0, 1)$ if the following conditions are satisfied (Ma, Wu, and Lu):

(I1) If $x \in I$, $y \in E$, $y \leq x$ imply $y \in I$. (I2) If $x \ominus y \in I$, $y \in I$ imply $x \in I$.

If an ideal *I* of effect algebra $(E, \perp, \oplus, 0, 1)$ is also a total order set, then the ideal is said to be a *total order ideal* of $(E, \perp, \oplus, 0, 1)$.

2. A TOPOLOGY OF EFFECT ALGEBRAS INDUCED BY THE IDEALS

As we knew, study of topology of effect algebras is a very important and interesting topics, see, for example, Riecanova (2000, 2002, 2004) and Qu *et al.* (2004). In 1985, Alo and Deeba showed that a base of a uniformity can be generated by the ideals of BCK-algebras (Alo and Deeba, 1985). In 1991, Qun Zhang proved the analogous result holds for BCI-algebras, and there is a lot of families of ideals, each of which determines uniformities, and so a topology of BCI-algebras (Zhang, 1991).

In this paper, we show that all the total order ideals of effect algebras can also induce a topology on effect algebras.

Let $(E, \perp, \oplus, 0, 1)$ be an effect algebra. For each ideal *I* of $(E, \perp, \oplus, 0, 1)$, denote $U_I = \{(x, y) : (x, y) \in E \times E \text{ and } x \ominus y \in I \text{ or } y \ominus x \in I\}.$

If $U, V \subseteq E \times E$, define $U \circ V = \{(x, z) : \text{there exists } y \in X \text{ such that } (x, y) \}$ $\in U$ and $(y, z) \in V$; $U^{-1} = \{(y, x) : (x, y) \in U\}.$

For each $y \in X$, denote $U(y) = \{x : (y, x) \in U\}$, and denote $\Delta = \{(x, x) | x \in$ *X*}.

Remark 2.1. Our definition of U_I is very different from the definition of Alo and Deeba (1985) and Zhang (1991).

A *uniformity* on effect algebra $(E, \perp, \oplus, 0, 1)$ is a nonempty family *K* of subsets of $E \times E$ such that the following conditions are satisfied:

 $(U1)$ ∆ ⊂ *U* for each $U \in K$. (U2) If *U* ∈ *K*, then U^{-1} ∈ *K*. (U3) If $U \in K$, then there exits a $V \in K$, such that $V \circ V \subseteq U$. (U4) If $U, V \in K$, then $U \cap V \in K$. (U5) If $U \in K$ and $U \subseteq V \subseteq X \times X$, then $V \in K$.

Theorem 2.1. *Let I and J be ideals of effect algebra* $(E, \perp, \oplus, 0, 1)$ *. Then*

- (1) $\Delta = U_0$, where {0} *means the zero ideal* {0} *of* (*E*, \perp , \oplus , 0, 1).
- (2) $I \subseteq J$ *implies* $U_I \subseteq U_J$.
- (3) $U_I = U_I^{-1}$.
- (4) $U_I \cap U_I = U_{I \cap I}$.
- $(U_I \cup U_I \subset U_I \circ U_I$.
- (6) If I is a total order ideal, then $U_I \circ U_I = U_I$.

Proof: (1) $(x, y) \in \Delta \Leftrightarrow x \oplus y = 0$ or $y \ominus x = 0 \Leftrightarrow (x, y) \in U_0$. (2) and (3) follow from the definition immediately. (4) $(x, y) \in U_I \cap U_J \Leftrightarrow (x, y) \in U_I$ and $(x, y) \in U_J \Leftrightarrow x \oplus y \in I$ or $y \ominus x \in I$ and $x \ominus y \in J$ or $y \ominus x \in J$.

Thus, there are four possible cases:

- (i) $x \ominus y \in I$, $x \ominus y \in J$. In this case, we get $x \ominus y \in I \cap J$.
- (ii) $x \ominus y \in I$, $y \ominus x \in J$. Thus, we have $y \le x$ and $x \le y$ and so $x \ominus y =$ $y \ominus x = 0 \in I \cap J$.
- (iii) $y \ominus x \in I$, $x \ominus y \in J$. As (ii), we have $x = y$ and so $x \ominus y = y \ominus x =$ $0 \in I \cap J$.
- (iv) $y \ominus x \in I$, $y \ominus x \in J$. In this case, we get $y \ominus x \in I \cap J$.

It follows from (i) to (iv) that $(x, y) \in U_{I \cap I}$. (5) If $(x, y) \in U_I$, then $(x, y) \in U_I \circ U_J$, since $(y, y) \in \Delta \subseteq U_J$. Similarly, if $(x, y) \in U_J$, then $(x, y) \in U_I \circ U_J$, too. $(6) U_I = U_I \cup U_I \subseteq U_I \circ U_I$ from (5).

If $(x, z) \in U_I \circ U_I$, then there is $y \in X$ such that

- $(x, y) \in U_I$, $(y, z) \in U_I$. So $x \ominus y \in I$ or $y \ominus x \in I$ and $y \ominus z \in I$ or $z \ominus y \in I$. Thus, there are four possible cases:
	- (i) $x \ominus y \in I$, $y \ominus z \in I$. In this case, we have $(x \ominus z) \ominus (x \ominus y) = (y \ominus z)$ *z*), it follows from the definition of ideal that $x \oplus z \in I$.
	- (ii) $y \ominus x \in I$, $y \ominus z \in I$. It follows from *I* is a total order ideal that $y \ominus z$ *y* θ *x* or *y* θ *x* \le *y* θ *z*. If *y* θ *z* \le *y* θ *x*, then $(y \theta x) \theta$ $(y \theta z) =$ $(z \ominus x)$, we get $(z \ominus x) \le (y \ominus x)$, so $(z \ominus x) \in I$. If $y \ominus x \le y \ominus z$, then $(y \ominus z) \ominus (y \ominus x) = (x \ominus z), (x \ominus z) \in I$.
	- (iii) $y \ominus x \in I$, $z \ominus y \in I$. In this case, we have $(z \ominus x) \ominus (y \ominus x) = (z \ominus z)$ *y*), it follows from the definition of ideal that $(z \ominus x) \in I$.
	- (iv) $x \ominus y \in I$, $z \ominus y \in I$. As (iii), we get $(x \ominus y) \ominus (z \ominus y) = (x \ominus z)$ or $(z \ominus y) \ominus (x \ominus y) = z \ominus x$, so $x \ominus z \in I$ or $z \ominus x \in I$.

Thus, we have proved that $(x, z) \in U_I$, hence $U_I \circ U_I = U_I$. This theorem is proved.

From Theorem 2.1, we can give out the first main result immediately. \Box

Theorem 2.2. *Let* I *be the family of all the total order ideals of effect algebra* $(E, \bot, \oplus, 0, 1)$ *and* $K_0 = \{U_I : I \in \mathcal{I}\}\$ *. Then*

 $K = \{V \subseteq E \times E : \exists U_I \in K_0, U_I \subseteq V\}.$

is a uniformity of the effect algebra (*E*, \bot , \oplus , 0, 1)*, and* $T = \{U_I[x] : I \in \mathcal{I}, x \in$ *E*} *is a base for the topology* τ *on* (*E*, \bot , \oplus , 0, 1) *which is induced by the uniformity K .*

3. OPERATION CONTINUITY OF EFFECT ALGEBRAS WITH RESPECT TO TOPOLOGY *τ*

Riecanova (2000) studied the continuity of \oplus and \ominus with respect to the order topology when the effect algebras $(E, \perp, \oplus, 0, 1)$ are lattice effect algebras. Recently, Ou *et al.* (2004) studied the continuity of \oplus and \ominus with respect to the interval topology when the effect algebras $(E, \perp, \oplus, 0, 1)$ are also lattice effect algebras.

Now, we study the continuity of \oplus and \ominus with respect to the topology τ ; our second main result is as follows:

Theorem 3.1. *Let* $(E, \perp, \oplus, 0, 1)$ *be an effect algebra. If the net* $\{a_{\alpha}\}_{{\alpha \in \Lambda}}$ *of* $(E, \perp, \oplus, 0, 1)$ *is* τ *convergent to a point a of* $(E, \perp, \oplus, 0, 1)$ *, and* $a_\alpha \leq b'$ *for all* $\alpha \in \Lambda$ and $a \leq b'$, then $\{a_{\alpha} \oplus b\}_{\alpha \in \Lambda}$ is τ *convergent to a* $\oplus b$.

Proof: Let *I* be a total order ideal of $(E, \perp, \oplus, 0, 1)$. Since the net $\{a_{\alpha}\}_{{\alpha \in \Lambda}}$ is τ convergent to *a*, so there exists a α_0 such that for each $\alpha \ge \alpha_0$, $a_\alpha \ominus a \in I$ or $a \ominus a$

 $a_{\alpha} \in I$. Note that $a_{\alpha} \leq b'$ for all $\alpha \in \Lambda$, $a \leq b'$, so we have $a_{\alpha} \oplus b \ominus (a \oplus b) =$ $a_{\alpha} \oplus a \in I$ or $a \oplus b \oplus (a_{\alpha} \oplus b) = a \oplus a_{\alpha} \in I$. This showed that $\{a_{\alpha} \oplus b\}_{\alpha \in \Lambda}$ is τ convergent to $a \oplus b$.

Similarly, we may prove the following two theorems:

Theorem 3.2. *Let* $(E, \perp, \oplus, 0, 1)$ *be an effect algebra. If the net* $\{a_{\alpha}\}_{{\alpha \in \Lambda}}$ *of* $(E, \perp, \oplus, 0, 1)$ *is* τ *convergent to a point a of* $(E, \perp, \oplus, 0, 1)$ *, and a_α* $\leq b$ *for all* $\alpha \in \Lambda$ and $a \leq b$, then $\{b \ominus a_{\alpha}\}_{{\alpha \in \Lambda}}$ *is* τ *convergent to* $b \ominus a$.

Theorem 3.3. *Let* $(E, \perp, \oplus, 0, 1)$ *be an effect algebra. If the net* $\{a_{\alpha}\}_{{\alpha \in \Lambda}}$ *of* $(E, \perp, \oplus, 0, 1)$ *is* τ *convergent to a point a of* $(E, \perp, \oplus, 0, 1)$ *, and* $b \le a_\alpha$ *for all* $\alpha \in \Lambda$ *and* $b \leq a$, then $\{a_{\alpha} \oplus b\}_{\alpha \in \Lambda}$ *is* τ *convergent to* $a \oplus b$.

ACKNOWLEDGMENT

This project is supported by Natural Science Fund of China (10471124) and Natural Science Fund of Zhejiang Province of China in 2004 (M103057).

REFERENCES

- Alo, R. A. and Deebe, E. Y. (1985). A note on uniformities of a BCK-algebra. *Math. Japonica* **30**, 237–240.
- Foulis, D. J. and Bennett, M. K. (1994). Effect algebras and unsharp quantum logics. *Found. Phys.* **24**, 1331–1352.
- Kopka, F. and Chovanec, F. (1994). D-posets. *Math. Slovaca* **44**, 21–34.
- Ma Zhihao, Wu Junde, and Lu Shijie (2004). Ideals and Filters in Pseudo-effect Algebras. *International Journal of Theoretical Physics* **43**(6).
- Qu Wenbo, Wu Junde, and Yang Chengwu. (2004). On Interval Topology Continuity of Effect Algebra ` Operations. *International Journal of Theoretical Physics* **43**(11).
- Riecanova, Z. (2000). *On Order Topological Continuity of Effect Algebra Operations. Contributions to General Algebra 12*, Verlag-Johannes, Heyn Klagenfurt, pp. 349–354.
- Riecanova, Z. (2002). States, Uniformities and Metrics on Lattice Effect Algebra. *Int. J. Uncertain Fuzziness Knowledge-Based Sys.* **10**, 125–133.

Riecanova, Z. (2004). Order-Topological Lattice Effect Algebras. *Preprint*.

Zhang, Q. (1991). Topologies induced by ideals on BCI-algebras. *J. Hubei University* **13**, 326–330.