Ideal Topology on Effect Algebras

Zhihao Ma,¹ Junde Wu,^{1,3} and Shijie Lu²

The ideals of effect algebras induce a topology on effect algebras. The operations \oplus and \ominus of effect algebras are continuous with respect to this topology.

KEY WORDS: effect algebras; ideals; uniformities; topologies.

1. INTRODUCTION

Foulis and Bennet in 1994 introduced the following algebraic system $(E, \bot, \oplus, 0, 1)$ to model unsharp quantum logics, and $(E, \bot, \oplus, 0, 1)$ is said to be an *effect algebra* (Foulis and Bennet, 1994):

Let *E* be a set with two special elements 0, 1; \perp be a subset of $E \times E$; if $(a, b) \in \perp$, denote $a \perp b$, and let $\oplus : \perp \rightarrow E$ be a binary operation; and let the following axioms hold:

(E1) *Commutative Law.* If $a, b \in E$ and $a \perp b$, then $b \perp a$ and $a \oplus b = b \oplus a$.

(E2) Associative Law. If $a, b, c \in E, a \perp b$, and $(a \oplus b) \perp c$, then $b \perp c, a \perp (b \oplus c)$, and $(a \oplus b) \oplus c = a \oplus (b \oplus c)$.

(E3) *Orthocomplementation Law.* For each $a \in E$ there exists a unique $b \in E$, such that $a \perp b$ and $a \oplus b = 1$.

(E4) *Zero-Unit Law.* If $a \in E$ and $1 \perp a$, then a = 0.

Let $(E, \bot, \oplus, 0, 1)$ be an effect algebra. If $a, b \in E$ and $a \bot b$, we say that a and b be *orthogonal*. If $a \oplus b = 1$, we say that b is the *orthocomplement* of a, and we write b = a'. Clearly 1' = 0, (a')' = a, $a \bot 0$, and $a \oplus 0 = a$ for all $a \in E$.

We say that $a \le b$ if there exists $c \in E$, such that $a \perp c$ and $a \oplus c = b$. We may prove that \le is a partial ordering on *E* and satisfies $0 \le a \le 1$, $a \le b \Leftrightarrow b' \le a'$, and $a \le b' \Leftrightarrow a \perp b$ for $a, b \in E$. If the partial order \le of an effect algebra

¹ Department of Mathematics, Zhejiang University, Hangzhou 310027, People's Republic of China.

²City College, Zhejiang University, Hangzhou, People's Republic of China.

³To whom correspondence should be addressed at Department of Mathematics, Zhejiang University, Hangzhou 310027, People's Republic of China; e-mail: wjd@math.zju.edu.cn.

 $(E, \bot, \oplus, 0, 1)$ defined as above is a lattice, then the effect algebra $(L, \bot, \oplus, 0, 1)$ is said to be a *lattice effect algebra*.

If $a \le b$ and $e \in E$, such that $a \perp e$, $a \oplus e = b$, we denote e as $b \ominus a$ and \ominus is called the *difference operation*. Furthermore, it is easy to prove that if $a \le b \le c$, then the difference operation \ominus satisfies the following properties (Foulis and Bennet, 1994):

(D1) $b \ominus a \leq b$.

 $(D2) b \ominus (b \ominus a) = a.$

(D3) $(c \ominus b) \le (c \ominus a)$. (D4) $(c \ominus a) \ominus (c \ominus b) = b \ominus a$.

The properties D1–D4 are very important, in fact, Kopka and Chovanec in 1994 introduced the following quantum logic structure (Kopka and Chovanec, 1994):

A difference poset is a partially ordered set $(D, \le, 0, 1)$ with a maximum element 1 and a minimum element 0, and with a partially defined binary operation \ominus , such that $b \ominus a$ is defined iff $a \le b$, and the operation \ominus satisfies properties (D1)–(D4).

Thus, each effect algebra can induce a difference poset. Foulis and Bennet pointed out that the converse is also true (Foulis and Bennet, 1994). Thus, the effect algebras and the difference posets are the same thing.

Let $(E, \bot, \oplus, 0, 1)$ be an effect algebra. A nonempty subset *I* of $(E, \bot, \oplus, 0, 1)$ is said to be an *ideal* of $(E, \bot, \oplus, 0, 1)$ if the following conditions are satisfied (Ma, Wu, and Lu):

(I1) If $x \in I$, $y \in E$, $y \le x$ imply $y \in I$. (I2) If $x \ominus y \in I$, $y \in I$ imply $x \in I$.

If an ideal *I* of effect algebra $(E, \bot, \oplus, 0, 1)$ is also a total order set, then the ideal is said to be a *total order ideal* of $(E, \bot, \oplus, 0, 1)$.

2. A TOPOLOGY OF EFFECT ALGEBRAS INDUCED BY THE IDEALS

As we knew, study of topology of effect algebras is a very important and interesting topics, see, for example, Riecanova (2000, 2002, 2004) and Qu *et al.* (2004). In 1985, Alo and Deeba showed that a base of a uniformity can be generated by the ideals of BCK-algebras (Alo and Deeba, 1985). In 1991, Qun Zhang proved the analogous result holds for BCI-algebras, and there is a lot of families of ideals, each of which determines uniformities, and so a topology of BCI-algebras (Zhang, 1991).

In this paper, we show that all the total order ideals of effect algebras can also induce a topology on effect algebras.

Let $(E, \bot, \oplus, 0, 1)$ be an effect algebra. For each ideal *I* of $(E, \bot, \oplus, 0, 1)$, denote $U_I = \{(x, y) : (x, y) \in E \times E \text{ and } x \ominus y \in I \text{ or } y \ominus x \in I\}$.

If $U, V \subseteq E \times E$, define $U \circ V = \{(x, z) : \text{there exists } y \in X \text{ such that } (x, y) \in U \text{ and } (y, z) \in V\}; U^{-1} = \{(y, x) : (x, y) \in U\}.$

For each $y \in X$, denote $U(y) = \{x : (y, x) \in U\}$, and denote $\Delta = \{(x, x) | x \in X\}$.

Remark 2.1. Our definition of U_I is very different from the definition of Alo and Deeba (1985) and Zhang (1991).

A *uniformity* on effect algebra $(E, \bot, \oplus, 0, 1)$ is a nonempty family K of subsets of $E \times E$ such that the following conditions are satisfied:

(U1) $\Delta \subseteq U$ for each $U \in K$. (U2) If $U \in K$, then $U^{-1} \in K$. (U3) If $U \in K$, then there exits a $V \in K$, such that $V \circ V \subseteq U$. (U4) If $U, V \in K$, then $U \cap V \in K$. (U5) If $U \in K$ and $U \subseteq V \subseteq X \times X$, then $V \in K$.

Theorem 2.1. Let I and J be ideals of effect algebra $(E, \bot, \oplus, 0, 1)$. Then

- (1) $\Delta = U_0$, where {0} means the zero ideal {0} of $(E, \bot, \oplus, 0, 1)$.
- (2) $I \subseteq J$ implies $U_I \subseteq U_J$.
- (3) $U_I = U_I^{-1}$.
- (4) $U_I \cap U_J = U_{I \cap J}$.
- (5) $U_I \cup U_J \subseteq U_I \circ U_J$.
- (6) If I is a total order ideal, then $U_I \circ U_I = U_I$.

Proof: (1) $(x, y) \in \Delta \Leftrightarrow x \ominus y = 0$ or $y \ominus x = 0 \Leftrightarrow (x, y) \in U_0$. (2) and (3) follow from the definition immediately. (4) $(x, y) \in U_I \cap U_J \Leftrightarrow (x, y) \in U_I$ and $(x, y) \in U_J \Leftrightarrow x \ominus y \in I$ or $y \ominus x \in I$ and $x \ominus y \in J$ or $y \ominus x \in J$.

Thus, there are four possible cases:

- (i) $x \ominus y \in I, x \ominus y \in J$. In this case, we get $x \ominus y \in I \cap J$.
- (ii) $x \ominus y \in I$, $y \ominus x \in J$. Thus, we have $y \le x$ and $x \le y$ and so $x \ominus y = y \ominus x = 0 \in I \cap J$.
- (iii) $y \ominus x \in I$, $x \ominus y \in J$. As (ii), we have x = y and so $x \ominus y = y \ominus x = 0 \in I \cap J$.
- (iv) $y \ominus x \in I$, $y \ominus x \in J$. In this case, we get $y \ominus x \in I \cap J$.

It follows from (i) to (iv) that $(x, y) \in U_{I \cap J}$. (5) If $(x, y) \in U_I$, then $(x, y) \in U_I \circ U_J$, since $(y, y) \in \Delta \subseteq U_J$. Similarly, if $(x, y) \in U_J$, then $(x, y) \in U_I \circ U_J$, too. (6) $U_I = U_I \cup U_I \subseteq U_I \circ U_I$ from (5). If $(x, z) \in U_I \circ U_I$, then there is $y \in X$ such that

- $(x, y) \in U_I, (y, z) \in U_I$. So $x \ominus y \in I$ or $y \ominus x \in I$ and $y \ominus z \in I$ or $z \ominus y \in I$. Thus, there are four possible cases:
 - (i) $x \ominus y \in I$, $y \ominus z \in I$. In this case, we have $(x \ominus z) \ominus (x \ominus y) = (y \ominus z)$, it follows from the definition of ideal that $x \ominus z \in I$.
 - (ii) $y \ominus x \in I$, $y \ominus z \in I$. It follows from *I* is a total order ideal that $y \ominus z \le y \ominus x$ or $y \ominus x \le y \ominus z$. If $y \ominus z \le y \ominus x$, then $(y \ominus x) \ominus (y \ominus z) = (z \ominus x)$, we get $(z \ominus x) \le (y \ominus x)$, so $(z \ominus x) \in I$. If $y \ominus x \le y \ominus z$, then $(y \ominus z) \ominus (y \ominus x) = (x \ominus z), (x \ominus z) \in I$.
 - (iii) $y \ominus x \in I, z \ominus y \in I$. In this case, we have $(z \ominus x) \ominus (y \ominus x) = (z \ominus y)$, it follows from the definition of ideal that $(z \ominus x) \in I$.
 - (iv) $x \ominus y \in I, z \ominus y \in I$. As (iii), we get $(x \ominus y) \ominus (z \ominus y) = (x \ominus z)$ or $(z \ominus y) \ominus (x \ominus y) = z \ominus x$, so $x \ominus z \in I$ or $z \ominus x \in I$.

Thus, we have proved that $(x, z) \in U_I$, hence $U_I \circ U_I = U_I$. This theorem is proved.

From Theorem 2.1, we can give out the first main result immediately. \Box

Theorem 2.2. Let \mathcal{I} be the family of all the total order ideals of effect algebra $(E, \bot, \oplus, 0, 1)$ and $K_0 = \{U_I : I \in \mathcal{I}\}$. Then

 $K = \{ V \subseteq E \times E : \exists U_I \in K_0, U_I \subseteq V \}.$

is a uniformity of the effect algebra $(E, \bot, \oplus, 0, 1)$, and $T = \{U_I[x] : I \in \mathcal{I}, x \in E\}$ is a base for the topology τ on $(E, \bot, \oplus, 0, 1)$ which is induced by the uniformity K.

3. OPERATION CONTINUITY OF EFFECT ALGEBRAS WITH RESPECT TO TOPOLOGY au

Riecanova (2000) studied the continuity of \oplus and \ominus with respect to the order topology when the effect algebras $(E, \bot, \oplus, 0, 1)$ are lattice effect algebras. Recently, Qu *et al.* (2004) studied the continuity of \oplus and \ominus with respect to the interval topology when the effect algebras $(E, \bot, \oplus, 0, 1)$ are also lattice effect algebras.

Now, we study the continuity of \oplus and \ominus with respect to the topology τ ; our second main result is as follows:

Theorem 3.1. Let $(E, \bot, \oplus, 0, 1)$ be an effect algebra. If the net $\{a_{\alpha}\}_{\alpha \in \Lambda}$ of $(E, \bot, \oplus, 0, 1)$ is τ convergent to a point a of $(E, \bot, \oplus, 0, 1)$, and $a_{\alpha} \leq b'$ for all $\alpha \in \Lambda$ and $a \leq b'$, then $\{a_{\alpha} \oplus b\}_{\alpha \in \Lambda}$ is τ convergent to $a \oplus b$.

Proof: Let *I* be a total order ideal of $(E, \bot, \oplus, 0, 1)$. Since the net $\{a_{\alpha}\}_{\alpha \in \Lambda}$ is τ convergent to *a*, so there exists a α_0 such that for each $\alpha \ge \alpha_0$, $a_{\alpha} \ominus a \in I$ or $a \ominus$

 $a_{\alpha} \in I$. Note that $a_{\alpha} \leq b'$ for all $\alpha \in \Lambda$, $a \leq b'$, so we have $a_{\alpha} \oplus b \ominus (a \oplus b) = a_{\alpha} \ominus a \in I$ or $a \oplus b \ominus (a_{\alpha} \oplus b) = a \ominus a_{\alpha} \in I$. This showed that $\{a_{\alpha} \oplus b\}_{\alpha \in \Lambda}$ is τ convergent to $a \oplus b$.

Similarly, we may prove the following two theorems:

Theorem 3.2. Let $(E, \bot, \oplus, 0, 1)$ be an effect algebra. If the net $\{a_{\alpha}\}_{\alpha \in \Lambda}$ of $(E, \bot, \oplus, 0, 1)$ is τ convergent to a point a of $(E, \bot, \oplus, 0, 1)$, and $a_{\alpha} \leq b$ for all $\alpha \in \Lambda$ and $a \leq b$, then $\{b \ominus a_{\alpha}\}_{\alpha \in \Lambda}$ is τ convergent to $b \ominus a$.

Theorem 3.3. Let $(E, \bot, \oplus, 0, 1)$ be an effect algebra. If the net $\{a_{\alpha}\}_{\alpha \in \Lambda}$ of $(E, \bot, \oplus, 0, 1)$ is τ convergent to a point a of $(E, \bot, \oplus, 0, 1)$, and $b \leq a_{\alpha}$ for all $\alpha \in \Lambda$ and $b \leq a$, then $\{a_{\alpha} \ominus b\}_{\alpha \in \Lambda}$ is τ convergent to $a \ominus b$.

ACKNOWLEDGMENT

This project is supported by Natural Science Fund of China (10471124) and Natural Science Fund of Zhejiang Province of China in 2004 (M103057).

REFERENCES

- Alo, R. A. and Deebe, E. Y. (1985). A note on uniformities of a BCK-algebra. *Math. Japonica* **30**, 237–240.
- Foulis, D. J. and Bennett, M. K. (1994). Effect algebras and unsharp quantum logics. *Found. Phys.* 24, 1331–1352.
- Kopka, F. and Chovanec, F. (1994). D-posets. Math. Slovaca 44, 21-34.
- Ma Zhihao, Wu Junde, and Lu Shijie (2004). Ideals and Filters in Pseudo-effect Algebras. International Journal of Theoretical Physics 43(6).
- Qu Wenbo, Wu Junde, and Yang Chengwu. (2004). On Interval Topology Continuity of Effect Algebra Operations. *International Journal of Theoretical Physics* 43(11).
- Riecanova, Z. (2000). On Order Topological Continuity of Effect Algebra Operations. Contributions to General Algebra 12, Verlag-Johannes, Heyn Klagenfurt, pp. 349–354.
- Riecanova, Z. (2002). States, Uniformities and Metrics on Lattice Effect Algebra. Int. J. Uncertain Fuzziness Knowledge-Based Sys. 10, 125–133.

Riecanova, Z. (2004). Order-Topological Lattice Effect Algebras. Preprint.

Zhang, Q. (1991). Topologies induced by ideals on BCI-algebras. J. Hubei University 13, 326–330.